Götze, Friedrich
(as bibtex)
Elsewhere:
[math people]
[google]
[google scholar]
Articles (30)
-
Sambale, Holger, Götze, Friedrich.
Second order concentration via logarithmic Sobolev inequalities.
Bernoulli
2020.
26:93-126
-
Ulyanov, Vladimir, Spokoiny, Vladimir, Naumov, Alexey, Götze, Friedrich.
Large ball probabilities, Gaussian comparison and anti-concentration.
Bernoulli
2019.
2019:-
-
Timushev, Dmitry, Tikhomirov, Alexander, Naumov, Alexey, Götze, Friedrich.
On the local semicircular law for Wigner ensembles.
Bernoulli
2018.
24:2358-2400
-
Tikhomirov, Alexander, Naumov, Alexey, Götze, Friedrich.
Distribution of linear statistics of singular values of the product of random matrices.
Bernoulli
2017.
2017:-
-
Zaitsev, Andrei Yu., Götze, Friedrich.
Explicit rates of approximation in the CLT for quadratic forms.
The Annals of Probability
2014.
42:354-397
-
Venker, Martin, Götze, Friedrich.
Local universality of repulsive particle systems and random matrices.
The Annals of Probability
2014.
42:2207-2242
-
Kukso, Olga, Götze, Friedrich, Kaliada, Dzianis.
The asymptotic number of integral cubic polynomials with bounded heights and discriminants.
Lithuanian Mathematical Journal
2014.
54:150-165
-
Kukso, Olga, Götze, Friedrich, Bernik, Vasilii.
On algebraic points in the plane near smooth curves∗.
Lithuanian Mathematical Journal
2014.
54:231-251
-
Götze, Friedrich, Chistyakov, Gennadiy P., Bobkov, Sergey G..
Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem.
The Annals of Probability
2013.
41:2479-2512
-
Gotze, Friedrich, Goetze, Friedrich, Bobkov, Sergey G., Chistyakov, Gennadiy P., Götze, Friedrich.
Bounds for characteristic functions in terms of quantiles and entropy.
Electronic Communications in Probability
2012.
17:1-9
-
Götze, Friedrich, Chistyakov, Gennadiy, Bobkov, Sergey.
Bounds for characteristic functions in terms of quantiles and
entropy.
Electronic Communications in Probability
2012.
2012:-
-
Bloznelis, Mindaugas, Götze, Friedrich, Jaworski, Jerzy.
Birth of a strongly connected giant in an inhomogeneous random digraph.
Journal of Applied Probability
2012.
49:601-611
-
Gotze, Friedrich, Goetze, Friedrich, Götze, Friedrich, Tikhomirov, Alexander.
The circular law for random matrices.
The Annals of Probability
2010.
38:1444-1491
-
Bobkov, Sergey G., Götze, Friedrich.
Concentration inequalities and limit theorems for randomized sums.
Probability Theory and Related Fields
2007.
137:49-81
-
Götze, Friedrich, Tikhomirov, Alexander.
Rate of convergence in probability to the Marchenko-Pastur law.
Bernoulli
2004.
10:503-548
-
Giné, Evarist, Götze, Friedrich.
On standard normal convergence of the multivariate student $t$-statistic for symmetric random vectors.
Electronic Communications in Probability
2004.
9:162-171
-
Gotze, Friedrich, Goetze, Friedrich, Rackauskas, Alfredas, Götze, Friedrich, Račkauskas, Alfredas.
Adaptive choice of bootstrap sample sizes.
Institute of Mathematical Statistics Lecture Notes - Monograph Series
2001.
2001:286-309
-
Gotze, Friedrich, Goetze, Friedrich, Houdre, Christian, Bobkov, Sergey G., Götze, Friedrich, Houdré, Christian.
On Gaussian and Bernoulli covariance representations.
Bernoulli
2001.
7:439-451
-
Götze, Friedrich, Bloznelis, Mindaugas.
An Edgeworth expansion for finite-population U-statistics.
Bernoulli
2000.
6:729-760
-
Gotze, Friedrich, Goetze, Friedrich, Bloznelis, Mindaugas, Götze, Friedrich.
An edgeworth expansion for finite-population $U$-statistics.
Bernoulli
2000.
6:729-760
-
Gotze, Friedrich, Goetze, Friedrich, Götze, Friedrich, Milbrodt, Hartmut.
The work of Johann Pfanzagl.
Mathematical Methods of Statistics
1999.
8:121-141
-
Gine, Evarist, Gotze, Friedrich, Goetze, Friedrich, Giné, Evarist, Götze, Friedrich, Mason, David M..
When is the Student $t$-statistic asymptotically standard normal?.
The Annals of Probability
1997.
25:1514-1531
-
Mason, David M., Götze, Friedrich, Giné, Evarist.
When is the Student $t$-statistic asymptotically standard
normal?.
The Annals of Probability
1997.
25:1514-1531
-
Götze, Friedrich, Bhattacharya, Rabi N..
Time-scales for Gaussian approximation and its breakdown under a hierarchy of periodic spatial heterogeneities.
Bernoulli
1995.
1:81-123
-
Gotze, Friedrich, Goetze, Friedrich, Bhattacharya, Rabi N., Götze, Friedrich.
Time-scales for Gaussian approximation and its breakdown under a hierarchy of periodic spatial heterogeneities (Corr: 96V2 p107-108).
Bernoulli
1995.
1:81-123
-
Gotze, Friedrich, Goetze, Friedrich, Zitikis, Ricardas, Bentkus, Vidmantas, Götze, Friedrich, Zitikis, Ričardas.
Lower estimates of the convergence rate for $U$-statistics.
The Annals of Probability
1994.
22:1707-1714
-
Gotze, Friedrich, Goetze, Friedrich, Zitikis, Ricardas, Bentkus, Vidmantas, Götze, Friedrich, Zitikis, Ričardas.
Asymptotic expansions in the integral and local limit theorems in Banach spaces with applications to $\omega$-statistics.
Journal of Theoretical Probability
1993.
6:727-780
-
Gotze, Friedrich, Goetze, Friedrich, Bolthausen, Erwin, Götze, Friedrich.
The rate of convergence for multivariate sampling statistics.
The Annals of Statistics
1993.
21:1692-1710
-
Zitikis, Ričardas, Götze, Friedrich, Bentkus, Vidmantas.
Asymptotic expansions in the integral and local limit theorems in banach spaces with applications to ω-statistics.
Journal of Theoretical Probability
1993.
6:727-780
-
Gotze, Friedrich, Goetze, Friedrich, Bentkus, Vidmantas, Götze, Friedrich.
On smoothness conditions and convergence rates in the CLT in Banach spaces.
Probability Theory and Related Fields
1993.
96:137-151