Gramacy, Robert B.
(as bibtex)
Elsewhere:
[math people]
[google]
[google scholar]
Articles (22)
-
Weikel, Daniel, Stewart-Ibarra, Anna M., Ryan, Sadie J., Rohr, Jason, Murdock, Courtney, Mordecai, Erin, Cohen, Jeremy, Gramacy, Robert B., Johnson, Leah R..
Phenomenological forecasting of disease incidence using heteroskedastic Gaussian processes: A dengue case study.
The Annals of Applied Statistics
2018.
12:27-66
-
Gramacy, Robert B..
Comment on Article by Pratola.
Bayesian Analysis
2016.
11:913-919
-
Gramacy, Robert B..
laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R.
Journal of Statistical Software
2016.
72:1-46
-
Drake, R. Paul, Trantham, Matt, Rutter, Erica, Kuranz, Carolyn C., Grosskopf, Michael J., Holloway, James Paul, Bingham, Derek, Gramacy, Robert B..
Calibrating a large computer experiment simulating radiative shock hydrodynamics.
The Annals of Applied Statistics
2015.
9:1141-1168
-
Gramacy, Robert B., Niemi, Jarad, Weiss, Robin M..
Massively Parallel Approximate Gaussian Process Regression.
SIAM/ASA Journal on Uncertainty Quantification
2014.
2:564-584
-
Wild, Stefan M., Taddy, Matt, Gramacy, Robert B..
Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning.
The Annals of Applied Statistics
2013.
7:51-80
-
McCulloch, Robert, Gramacy, Robert B., George, Edward I., Chipman, Hugh.
Bayesian treed response surface models.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
2013.
3:298-305
-
Gramacy, Robert B., Jensen, Shane T., Taddy, Matt.
Estimating player contribution in hockey with regularized logistic regression.
Journal of Quantitative Analysis in Sports
2013.
9:97-111
-
Gramacy, Robert B., Polson, Nicholas G..
Simulation-based regularized logistic regression.
Bayesian Analysis
2012.
7:567-590
-
Broderick, Tamara, Gramacy, Robert B..
Classification and categorical inputs with Treed Gaussian process models.
Journal of Classification
2011.
28:244-270
-
Taddy, Matthew A., Gramacy, Robert B., Polson, Nicholas G..
Dynamic trees for learning and design.
Journal of the American Statistical Association
2011.
106:109-123
-
Gramacy, Robert B., Polson, Nicholas G..
Particle learning of Gaussian process models for sequential design and optimization.
Journal of Computational and Graphical Statistics
2011.
20:102-118
-
Gramacy, Robert B., Pantaleo, Ester.
Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing.
Bayesian Analysis
2010.
5:237-262
-
Merl, Daniel, Johnson, Leah R., Gramacy, Robert B., Mangel, Marc.
Amei: An R package for the adaptive management of epidemiological interventions.
Journal of Statistical Software
2010.
36:NA-NA
-
Lee, Herbert K. H., Taddy, Matthew, Gramacy, Robert B., Gray, Genetha A..
Designing and analysing a circuit device experiment using treed Gaussian processes.
-
Gramacy, Robert B., Taddy, Matthew Alan.
Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models.
Journal of Statistical Software
2010.
33:NA-NA
-
Pantaleo, Ester, Gramacy, Robert B..
Shrinkage regression for multivariate inference with missing data, and an application
to portfolio balancing.
Bayesian Analysis
2010.
5:237-262
-
Gramacy, Robert B., Lee, Herbert K. H..
Adaptive Design and Analysis of Supercomputer Experiments.
Technometrics
2009.
51:130-145
-
Cule, Madeleine, Gramacy, Robert B., Samworth, Richard.
LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density.
Journal of Statistical Software
2009.
29:1-20
-
Gramacy, Robert B., Lee, Herbert K. H..
Bayesian Treed Gaussian Process Models With an Application to Computer Modeling.
Journal of the American Statistical Association
2008.
103:1119-1130
-
Gramacy, Robert B..
tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models.
Journal of Statistical Software
2007.
19:1-46
-
Gramacy, Robert B., Lee, Herbert K.H..
Gaussian processes and limiting linear models.